Frobenius Groups
 and a Foray into Linear Representations

Dylan Wallace, adv. Kevin Dao

April 24, 2024

The Frobenius Determinant Problem

Let G be a finite group with $|G|=n, g_{1}, \ldots, g_{n} \in G$.
Let $x_{g_{1}}, \ldots, x_{g_{n}}$ be distinct variables indexed by elements in G, and consider the matrix X_{G} with entries $\left(X_{G}\right)_{i j}=x_{g_{i} g_{j}}$. In this case, $x_{g_{i} g_{j}}=x_{g_{k}}$ if $g_{i} g_{j}=g_{k}$.

Frobenius' Determinant Theorem

$\operatorname{det} X_{G}=\prod_{j=1}^{r} P_{j}(\mathbf{x})^{\operatorname{deg} P_{j}}$, where $P_{j}(\mathbf{x})$ are pairwise nonproportional irreducible polynomials and r is the number of conjugacy classes of G

- Pairwise-nonproportional: $P_{i}(\mathbf{x})$ and $P_{j}(\mathbf{x})$ are not scalar multiples of each other
- Irreducible: $P_{j}(\mathbf{x})$ can't be written as a product of two polynomials
- Conjugacy class: Disjoint sets $C \subset G$ s.t. $h g h^{-1} \in C$ for $g \in C, h \in G$

Example

Let $G=\mathbb{Z} / 2 \mathbb{Z}$, with $g_{1}=\overline{0}$ and $g_{2}=\overline{1}$. Then $g_{1}^{2}=g_{1}, g_{2}^{2}=g_{1}$, and $g_{1} g_{2}=g_{2} g_{1}=g_{2}$; the conjugacy classes of G are $\left\{g_{1}\right\}$ and $\left\{g_{2}\right\}$, so $r=2$.

Then $X_{G}=\left[\begin{array}{ll}x_{g_{1}} & x_{g_{2}} \\ x_{g_{2}} & x_{g_{1}}\end{array}\right]$, so $\operatorname{det} X_{G}=x_{g_{1}}^{2}-x_{g_{2}}^{2}=\left(x_{g_{1}}+x_{g_{2}}\right)\left(x_{g_{1}}-x_{g_{2}}\right)$
So we have a product of

- 2 polynomials
- that are not scalar multiples of each other
- which aren't products of other polynomials
so our theorem holds for $G=\mathbb{Z} / 2 \mathbb{Z}$.
It turns out we can prove this theorem in the general case with Representation Theory.

Basic Representation Theory

Representation Theory is the study of group actions on vector spaces.

Definition

Given a group G and vector space V, a representation is a group homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$. The degree of ρ is $\operatorname{dim} V$.

- We will only be looking at representations of finite groups $(|G|=n$ for the rest of this presentation)
- We will be looking at finite representations over \mathbb{C}. In other words, $\operatorname{dim} V<\infty$ always. This keeps things clean and nice

Examples of representations

- $\rho: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{C}^{\times}$with $\rho(\overline{0})=1, \rho(\overline{1})=-1$ is a representation of degree 1
- More generally, if $\zeta^{n}=1$, then $\rho: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}^{\times}$with $\rho(\bar{k})=\zeta^{k}$ is a representation of degree 1
- ρ essential permutes the n-th roots of unity.
- $\rho: S_{3} \rightarrow \mathrm{GL}\left(\mathbb{C}^{2}\right)$ by $\rho(r)=\left[\begin{array}{cc}e^{2 \pi / 3} & 0 \\ 0 & e^{4 \pi / 3}\end{array}\right]$ and $\rho(s)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is a representation of degree 2

Group Algebra

The group algebra of G is the ring $\mathbb{C}[G]=\left\{\sum_{i=1}^{n} a_{i} g_{i}: a_{i} \in \mathbb{C}\right\}$.

- We can think of $\mathbb{C}[G]$ as a vector space with $g_{1}, \ldots, g_{n} \in G$ as bases
- Then G acts on $\mathbb{C}[G]$ by translation: $h\left(\sum_{i=1}^{n} a_{i} g_{i}\right)=\sum_{i=1}^{n} a_{i} h g_{i}$ for $h \in G$

Note that $\mathbb{C}[G]$-modules are precisely \mathbb{C}-representations of G : Suppose $(V,+, \cdot)$ is a $\mathbb{C}[G]$-module. Then we can construct a representation $\rho: G \rightarrow \mathrm{GL}(V)$ by $\rho(g): \vec{v} \mapsto g \cdot \vec{v}$. In this way, we have an equivalence between $\mathbb{C}[G]$-modules and representations of G over \mathbb{C}.

We specifically consider $\mathbb{C}[G]$ as a module over itself, defined by left-translation. From this we can define $\rho: G \rightarrow \operatorname{GL}(\mathbb{C}[G])$ by $\rho(g) h=g h, \forall g, h \in G$.

This representation is called the regular representation.

Reducible and Irreducible Representations

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation, and let $W \subseteq V$ be a subspace.

Definition

W is G-invariant under ρ if $\rho(g) W=W$ for all $g \in G$.
Because we are operating over \mathbb{C}, there exist many 1 -dimensional subspaces that are invariant under $\rho(g)$. But the span of an eigenvector is G-invariant only if it is an eigenvector of each $\rho(g)$!

Definition

A representation $\rho: G \rightarrow \mathrm{GL}(V)$ is reducible if there exist G-invariant subspaces $W, W^{\prime} \subset V$ s.t. $V=W \oplus W^{\prime}$.
If the only subspaces that are G-invariant under ρ are 0 and V itself, then ρ is irreducible.

Important Theorems

Schur's Lemma

Let $\rho: G \rightarrow \mathrm{GL}(V), \rho^{\prime}: G \rightarrow \mathrm{GL}(W)$, and $f: V \rightarrow W$ with $f \circ \rho(g)=\rho^{\prime}(g) \circ f$ for all $g \in G$. Then

- if $\rho \not \approx \rho^{\prime}$, then $f=0$;
- if $V=W$ and $\rho=\rho^{\prime}$, then f is a scalar product (a "homothety")

Note: $\rho \simeq \rho^{\prime}$ if there exists some isomorphism $f: V \rightarrow W$ s.t. $f \circ \rho(g)=\rho^{\prime}(g) \circ f$.
From ρ, ρ^{\prime}, and any map $h: V \rightarrow W$, we can construct a map f s.t. $f \circ \rho(g)=\rho^{\prime}(g) \circ f \Longrightarrow$ we can use this map to see if any two representations are isomorphic

Important Theorems contd.

Maschke's Theorem

If k is a field whose characteristic doesn't divide $|G|$, then $k[G] \simeq \oplus_{i}$ End V_{i}, where V_{i} are the irreducible representations of G over k.

- Characteristic of \mathbb{C} is $0 \Longrightarrow$ we can use Maschke's Theorem
- $\operatorname{End} V_{i} \simeq \oplus_{\operatorname{dim} V_{i}} V_{i}$ and $\operatorname{dim} \mathbb{C}[G]=n$, so $n=\sum_{i}\left(\operatorname{dim} V_{i}\right)^{2}$
- The regular representation $G \rightarrow \mathrm{GL}(\mathbb{C}[G])$ can be decomposed into $\operatorname{dim} V_{i}$ copies of a representation $G \rightarrow \mathrm{GL}\left(V_{i}\right)$ for each irreducible representation V_{i}
thus the regular representation contains every irreducible representation, sometimes multiple times

Basic Idea of Frobenius' Determinant Theorem

Proof Sketch:

- Construct a polynomial $L(\mathbf{x})=\sum_{i=1}^{n} x_{g_{i}} \rho(g)$. This is a matrix with the variables $x_{g_{i}}$ as coefficients, and $\operatorname{det} L(\mathbf{x})= \pm \operatorname{det} X_{G}$
- If our condition holds for $L(\mathbf{x})$, it holds for X_{G}
- Using Maschke's Theorem, we can show that $\operatorname{det} L(\mathbf{x})=\prod_{i=1}^{r}\left(\left.\operatorname{det} L(\mathbf{x})\right|_{V_{i}}\right)^{\operatorname{dim} V_{i}}$
- Show that each $\left.\operatorname{det} L(\mathbf{x})\right|_{V_{i}}$ is an irreducible polynomial, and that the matrix coefficients of $\left.L(\mathbf{x})\right|_{V_{i}}$ and $\left.L(\mathbf{x})\right|_{V_{j}}$ are different ©

Some Other Big Ideas

A lot of the plumbing between Schur's Lemma and Maschke's Theorem is done by characters.

Definition

Given a representation $\rho: G \rightarrow \mathbf{G L}(V)$, the character $\chi(g)$ of $g \in G$ is defined as $\chi(g)=\operatorname{Tr}(\rho(g))$.

- $\operatorname{Tr}(A)=\operatorname{Tr}\left(B A B^{-1}\right)$ for any matrices A, B, so $\chi(g)=\chi\left(h g h^{-1}\right)$ for any $g, h \in G \Longrightarrow \chi$ is defined on the conjugacy classes of G
- $\chi(g)=\operatorname{Tr}(\rho(g))=\lambda_{1}+\cdots+\lambda_{k}$, where λ_{i} are eigenvalues of $\rho(g) \in \operatorname{GL}(V)$. Then $\chi\left(g^{2}\right)=\lambda_{1}^{2}+\cdots+\lambda_{k}^{2}$, etc.
- Thus $\chi\left(g^{m}\right), m<|g|$ contains all the information of the eigenvalues of $\rho(g)$!

