Frobenius Groups

and a Foray into Linear Representations

Dylan Wallace, adv. Kevin Dao

April 24, 2024




The Frobenius Determinant Problem

Let G be a finite group with |G| =n, g1,...,9n € G.

Let z4,,..., 24, be distinct variables indexed by elements in G, and consider the
matrix X¢g with entries (Xg)ij = 4,9, In this case, 24,4, = x4, if gig; = gr.

Frobenius’' Determinant Theorem

-
det X = Hl Pj(x)d°ei, where Pj(x) are pairwise nonproportional irreducible
=
polynomials and r is the number of conjugacy classes of G

* Pairwise-nonproportional: P;(x) and P;(x) are not scalar multiples of each
other

® Irreducible: Pj(x) can't be written as a product of two polynomials

e Conjugacy class: Disjoint sets C c G s.t. hgh™' € C for ge C, he G
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Let G = Z/27, with g; =0 and go = 1. Then g2 = g1, g2 = g1, and
9192 = g291 = go; the conjugacy classes of G are {g1} and {g2}, so r = 2.

Tg T
Then X¢ = [xgl xgz], so det X = 2] — a2, = (x4, +xg,) (g, — 2g,)
g2 g1

So we have a product of
® 2 polynomials
® that are not scalar multiples of each other
® which aren't products of other polynomials
so our theorem holds for G = Z/27Z.

It turns out we can prove this theorem in the general case with Representation
Theory.
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Basic Representation Theory

Representation Theory is the study of group actions on vector spaces.

Definition

Given a group G and vector space V, a representation is a group
homomorphism p: G — GL(V'). The degree of p is dim V.

* We will only be looking at representations of finite groups (|G| = n for the
rest of this presentation)

® We will be looking at finite representations over C. In other words,
dim V' < oo always. This keeps things clean and nice
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Examples of representations Y

® p:7Z[27 — C* with p(0) =1, p(1) = -1 is a representation of degree 1

* More generally, if (" =1, then p: Z/nZ — C* with p(k) = ¢* is a
representation of degree 1

p essential permutes the n-th roots of unity.

6271'/3 0 0O 11.
* p: S5 > GL(C?) by p(r)=[ 0 etmp|Ade) = gfisa

representation of degree 2

5/11



Group Algebra Y

The group algebra of G is the ring C[G] = {f} a;gi :a; € (C}.
i=1

® We can think of C[G] as a vector space with g1,...,g, € G as bases
® Then G acts on C[G] by translation: h(z aigi) =Y ashg; for he G
i=1 i=1
Note that C[G]-modules are precisely C-representations of G: Suppose (V, +,-) is
a C[G]-module. Then we can construct a representation p: G — GL(V) by
p(g) : ¥~ g-¥. In this way, we have an equivalence between C[G]-modules and

representations of G over C.

We specifically consider C[G] as a module over itself, defined by left-translation.
From this we can define p: G - GL(C[G]) by p(g)h = gh, Yg,h € G.

This representation is called the regular representation.
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Reducible and Irreducible Representations

Let p: G - GL(V') be a representation, and let W € V' be a subspace.

Definition
W is G-invariant under p if p(g)W =W for all g € G.

Because we are operating over C, there exist many 1-dimensional subspaces that
are invariant under p(g). But the span of an eigenvector is G-invariant only if it
is an eigenvector of each p(g)!

Definition

A representation p: G — GL(V) is reducible if there exist G-invariant subspaces
WW cVst V=WeW'.

If the only subspaces that are G-invariant under p are 0 and V itself, then p is
irreducible.
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Important Theorems

Schur's Lemma

Let p: G > GL(V), p' : G- GL(W), and f:V - W with fop(g)=p"(g)o f
for all g € G. Then

° if p¢ p, then f =0;

° if V=W and p=p’, then f is a scalar product (a "homothety")

Note: p ~ p’ if there exists some isomorphism f:V > W st. fop(g)=p'(g9)of.
From p,p’, and any map h:V — W, we can construct a map f s.t.

fop(g)=p'(g)of = we can use this map to see if any two representations are
isomorphic

8/ 11



Important Theorems contd.

Maschke's Theorem
If k is a field whose characteristic doesn’t divide |G|, then k[G] ~ @; End V;,

where V; are the irreducible representations of G over k.
® Characteristic of C is 0 == we can use Maschke's Theorem
* EndV; = @gimv, Vi and dimC[G] =n, so n = ¥;(dim V;)?

® The regular representation G — GL(C[G]) can be decomposed into dim V;
copies of a representation G — GL(V;) for each irreducible representation V;

thus the regular representation contains every irreducible representation,
sometimes multiple times
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Basic Idea of Frobenius’' Determinant Theorem

Proof Sketch:

e Construct a polynomial L(x) = ;- x4, p(g). This is a matrix with the
variables x,, as coefficients, and det L(x) = +det X¢

If our condition holds for L(x), it holds for X¢

® Using Maschke's Theorem, we can show that
det L(x) = [T, (det L(x)[y, )™

® Show that each det L(x)|y; is an irreducible polynomial, and that the matrix
coefficients of L(x)[y, and L(x)|y, are different ©
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Some Other Big Ideas

A lot of the plumbing between Schur’'s Lemma and Maschke's Theorem is done
by characters.

Definition

Given a representation p: G — GL(V), the character x(g) of g € G is defined as
x(9) = Tr(p(9))-

* Tr(A) =Tr(BAB™) for any matrices A, B, so x(g) = x(hgh™!) for any
g,h e G = x is defined on the conjugacy classes of G

* x(9) =Tr(p(g)) = A1 +---+ Ak, where \; are eigenvalues of p(g) € GL(V).
Then x(g?) = A3 +---+ A2, etc.

Thus x(g™), m < |g| contains all the information of the eigenvalues of
p(9)!
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