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The Frobenius Determinant Problem

Let G be a finite group with ∣G∣ = n, g1, . . . , gn ∈ G.

Let xg1 , . . . , xgn be distinct variables indexed by elements in G, and consider the
matrix XG with entries (XG)ij = xgigj . In this case, xgigj = xgk if gigj = gk.

Frobenius’ Determinant Theorem

detXG =
r

∏
j=1

Pj(x)
degPj , where Pj(x) are pairwise nonproportional irreducible

polynomials and r is the number of conjugacy classes of G

● Pairwise-nonproportional: Pi(x) and Pj(x) are not scalar multiples of each
other

● Irreducible: Pj(x) can’t be written as a product of two polynomials

● Conjugacy class: Disjoint sets C ⊂ G s.t. hgh−1 ∈ C for g ∈ C, h ∈ G
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Example

Let G = Z/2Z, with g1 = 0 and g2 = 1. Then g21 = g1, g
2
2 = g1, and

g1g2 = g2g1 = g2; the conjugacy classes of G are {g1} and {g2}, so r = 2.

Then XG = [
xg1 xg2

xg2 xg1
], so detXG = x

2
g1 − x

2
g2 = (xg1 + xg2)(xg1 − xg2)

So we have a product of

● 2 polynomials

● that are not scalar multiples of each other

● which aren’t products of other polynomials

so our theorem holds for G = Z/2Z.

It turns out we can prove this theorem in the general case with Representation
Theory.
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Basic Representation Theory

Representation Theory is the study of group actions on vector spaces.

Definition

Given a group G and vector space V , a representation is a group
homomorphism ρ ∶ G→ GL(V ). The degree of ρ is dimV .

● We will only be looking at representations of finite groups (∣G∣ = n for the
rest of this presentation)

● We will be looking at finite representations over C. In other words,
dimV <∞ always. This keeps things clean and nice
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Examples of representations

● ρ ∶ Z/2Z→ C× with ρ(0) = 1, ρ(1) = −1 is a representation of degree 1

● More generally, if ζn = 1, then ρ ∶ Z/nZ→ C× with ρ(k) = ζk is a
representation of degree 1

● ρ essential permutes the n-th roots of unity.

● ρ ∶ S3 → GL(C2) by ρ(r) = [
e2π/3 0

0 e4π/3
] and ρ(s) = [

0 1
1 0

] is a

representation of degree 2
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Group Algebra

The group algebra of G is the ring C[G] = {
n

∑
i=1

aigi ∶ ai ∈ C}.

● We can think of C[G] as a vector space with g1, . . . , gn ∈ G as bases

● Then G acts on C[G] by translation: h(
n

∑
i=1

aigi) =
n

∑
i=1

aihgi for h ∈ G

Note that C[G]-modules are precisely C-representations of G: Suppose (V,+, ⋅) is
a C[G]-module. Then we can construct a representation ρ ∶ G→ GL(V ) by
ρ(g) ∶ v⃗ ↦ g ⋅ v⃗. In this way, we have an equivalence between C[G]-modules and
representations of G over C.

We specifically consider C[G] as a module over itself, defined by left-translation.
From this we can define ρ ∶ G→ GL(C[G]) by ρ(g)h = gh, ∀g, h ∈ G.

This representation is called the regular representation.
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Reducible and Irreducible Representations

Let ρ ∶ G→ GL(V ) be a representation, and let W ⊆ V be a subspace.

Definition

W is G-invariant under ρ if ρ(g)W =W for all g ∈ G.

Because we are operating over C, there exist many 1-dimensional subspaces that
are invariant under ρ(g). But the span of an eigenvector is G-invariant only if it
is an eigenvector of each ρ(g)!

Definition

A representation ρ ∶ G→ GL(V ) is reducible if there exist G-invariant subspaces
W,W ′ ⊂ V s.t. V =W ⊕W ′.
If the only subspaces that are G-invariant under ρ are 0 and V itself, then ρ is
irreducible.
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Important Theorems

Schur’s Lemma

Let ρ ∶ G→ GL(V ), ρ′ ∶ G→ GL(W ), and f ∶ V →W with f ○ ρ(g) = ρ′(g) ○ f
for all g ∈ G. Then

● if ρ /≃ ρ′, then f = 0;

● if V =W and ρ = ρ′, then f is a scalar product (a ”homothety”)

Note: ρ ≃ ρ′ if there exists some isomorphism f ∶ V →W s.t. f ○ ρ(g) = ρ′(g) ○ f .

From ρ, ρ′, and any map h ∶ V →W , we can construct a map f s.t.
f ○ ρ(g) = ρ′(g) ○ f Ô⇒ we can use this map to see if any two representations are
isomorphic

8 / 11



Important Theorems contd.

Maschke’s Theorem

If k is a field whose characteristic doesn’t divide ∣G∣, then k[G] ≃⊕iEndVi,
where Vi are the irreducible representations of G over k.

● Characteristic of C is 0 Ô⇒ we can use Maschke’s Theorem

● EndVi ≃⊕dimVi
Vi and dimC[G] = n, so n = ∑i(dimVi)

2

● The regular representation G→ GL(C[G]) can be decomposed into dimVi

copies of a representation G→ GL(Vi) for each irreducible representation Vi

thus the regular representation contains every irreducible representation,
sometimes multiple times
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Basic Idea of Frobenius’ Determinant Theorem

Proof Sketch:

● Construct a polynomial L(x) = ∑
n
i=1 xgiρ(g). This is a matrix with the

variables xgi as coefficients, and detL(x) = ±detXG

● If our condition holds for L(x), it holds for XG

● Using Maschke’s Theorem, we can show that
detL(x) =∏

r
i=1(detL(x)∣Vi)

dimVi

● Show that each detL(x)∣Vi is an irreducible polynomial, and that the matrix
coefficients of L(x)∣Vi and L(x)∣Vj are different ,
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Some Other Big Ideas

A lot of the plumbing between Schur’s Lemma and Maschke’s Theorem is done
by characters.

Definition

Given a representation ρ ∶ G→GL(V ), the character χ(g) of g ∈ G is defined as
χ(g) = Tr(ρ(g)).

● Tr(A) = Tr(BAB−1) for any matrices A,B, so χ(g) = χ(hgh−1) for any
g, h ∈ G Ô⇒ χ is defined on the conjugacy classes of G

● χ(g) = Tr(ρ(g)) = λ1 + ⋅ ⋅ ⋅ + λk, where λi are eigenvalues of ρ(g) ∈ GL(V ).
Then χ(g2) = λ2

1 + ⋅ ⋅ ⋅ + λ
2
k, etc.

● Thus χ(gm), m < ∣g∣ contains all the information of the eigenvalues of
ρ(g)!
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